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ABSTRACT 

 

The acid-base balance of the human body is 

influenced by the nutritional intake and 

dietary composition of individuals. It is of 

paramount importance to maintain this 

equilibrium for the optimal health of 

humans. The body receives acid or alkaline 

precursors from dietary intake. In general, 

the consumption of animal-based foods 

results in an acid load, whereas the 

consumption of plant-based foods 

contributes to an alkaline load. Diets high in 

dietary acid load cause a state of diet-

induced metabolic acidosis, which is 

associated with the development of 

cardiometabolic diseases. The significance 

of dietary acid-base balance in the context 

of cardiometabolic diseases, which have 

emerged as a significant contributor to 

global morbidity, is now being 

acknowledged in the literature. The 

objective of this review is to examine the 

existing evidence concerning the 

relationship between dietary acid load and 

chronic diseases and metabolic disorders, as 

well as the potential mechanisms underlying 

their development. 
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INTRODUCTION 

Non-communicable diseases (NCDs) are 

usually chronic diseases and are the result of 

genetic, physiological and environmental 

factors. They are the leading causes for 

illness and death worldwide. NCDs are 

responsible for 74% of all deaths worldwide 
[1]. Cardiovascular diseases (CVD), chronic 

respiratory diseases and diabetes, as well as 

cancer, are the main types of NCDs. A 

person's chances of developing a disease are 

influenced by various controllable and 

uncontrollable risk factors. Lifestyle factors 

(e.g. smoking, physical activity and diet) are 

modifiable risk factors that need to be 

addressed to prevent NCDs[2,3]. Among 

these risk factors, changing dietary habits is 

one of the important strategies in preventing 

or delaying NCDs.  

Dietary patterns are used to examine the 

relationship between dietary habits and 

NCD risk. Dietary patterns take into account 

long-term consumption of nutrients. It is 

important to evaluate dietary patterns 

because the relationship with chronic 

diseases is long-term[4-6]. Through the intake 

of acid or base precursors, nutrient intake 

affects acid-base status. Western-style diets 

are high in animal protein and processed 

foods. These contribute significantly to the 

dietary acid load (DAL). In contrast, fruits 

and vegetables, which have an alkalising 

effect and are generally low in DAL, are 

consumed in insufficient quantities[7,8]. High 

dietary acidity is linked to a poor 

cardiometabolic risk factors profile, 

including hypertension, obesity, high 

triglycerides, high LDL cholesterol and 

diabetes[9-14]. Based on the available 

evidence, it has been suggested in recent 

years that high DAL may influence chronic 

diseases[15,16]. 
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Acid-base balance 

The acid-base balance refers to the balance 

of the concentration of positively charged 

hydrogen ions (H+), which are the active 

component of all acids, in the extracellular 

fluid[17]. The pH of blood reflects the net 

production, buffering and elimination of all 

acids and bases within the system. The pH 

level considered normal has a range[18]. The 

pH of blood is approximately 7.40. While 

the pH of blood is maintained within the 

range of 7.35 to 7.45, the body employs 

buffer systems to prevent the occurrence of 

acidosis (pH below 7.35) or alkalosis (pH 

above 7.45), which refers to any change in 

this value. This is because maintaining 

blood pH within a certain range is critical 

for maintaining metabolic homeostasis[19]. A 

complex buffering system, involving the 

lungs and kidneys, is responsible for 

maintaining the body's acid-base balance 

and blood pH within the optimal range. 

The organs involved in acid-base balance 

play many roles, but the main function of 

the lungs is to remove carbon dioxide 

(CO2). The kidneys reabsorb filtered 

bicarbonate (HCO3
-) and remove ammonia 

(NH4
+) in the urine. However, plasma 

bicarbonate and pH fall if your body 

produces more acid than it can eliminate by 

lung and kidney. As a result of metabolic 

processes, an arterial pH of 7.35 or less 

and/or a low HCO3
- concentration produces 

what is clinically described as chronic 

metabolic acidosis, a state of stress for the 

body[20,21]. The lungs are the primary organ 

used to neutralize acute metabolic acidosis 

and respond more rapidly. However, 

chronic acid-base imbalance is mainly 

regulated by the kidneys and they are slower 

to react, taking hours or even days to 

respond[22]. 

Maintenance of acid-base homeostasis is 

important. A multitude of biochemical 

processes involve the generation or 

consumption of acids and bases. In 

biological systems, acids are divided into 

volatile acids and endogenous acids, which 

are non-volatile acids that are the result of 

diet or metabolic processes within the 

organism. Net endogenous acid production 

(NEAP) is described as the difference 

between alkaline substances obtained from 

the gastrointestinal tract and endogenous 

acid production. NEAP is also used to 

define DAL[23]. 

 

Dietary acid-base balance 

Nutrients and endogenous metabolic 

processes either produce or consume 

hydrogen ions and thus acids and bases. 

Under normal physiologic conditions, diet is 

the main determinant of net endogenous 

acid production and changes in diet can 

have various consequences for acid-base 

balance[23,24]. Short-term DAL may cause 

transient acid-base imbalance, but is rapidly 

compensated and has no clinical effect. 

Prolonged consumption of diets high in 

DAL may cause blood pH levels to fall 

within the optimum range of the spectrum 

but towards the lower end of the spectrum. 

However, these decreases are not beyond 

the physiologic range. In fact, when blood 

pH falls below 7.4, there is usually acid 

retention and low-grade metabolic acidosis 

in the body. Nevertheless, the pH of blood 

does not decline below the normal range 

until the severity of metabolic acidosis 

reaches a critical point. Diet-induced 

acidosis is different from clinical metabolic 

acidosis. Clinical metabolic acidosis is often 

triggered by a deficiency in the system's 

ability to neutralise the effects of blood pH 

fluctuations caused by non-dietary factors. 

This frequently culminates in a blood pH 

below 7.35. Although the 

pathophysiological implications of clinical 

metabolic acidosis are known, the exact 

impact of diet-induced metabolic acidosis is 

not known[25-27].   

When the contents of foods are analysed, it 

is seen that most of the foods contain acid 

precursors, while fruits and vegetables 

contain base precursors. The main source of 

endogenous acids in the body are volatile 

acids produced as a result of reactions 

during the oxidation of macronutrients. In a 

steady state, these reactions is balanced by 

their continuous production and 
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consumption, preventing the accumulation 

of acid. However, in the event of incomplete 

oxidation of these macronutrients, an 

overabundance of H+ is generated, leading 

to increased production of endogenous 

acids[18,23]. 

Following the digestion of food, the 

stomach secretes H+, while the pancreas 

provides the digestive tract with alkali. 

Following oxidation, these amino acids 

release protons (H+) and organic acids 

release alkalis, thereby affecting the acid-

base balance and ultimately being excreted 

by the kidneys. Although the intestines do 

not directly contribute to acid or base 

production, they influence acid and base 

formation as a consequence of metabolism 

and absorption[24]. 

Diet has the potential to influence acid-base 

status by providing acid and alkaline 

precursors from food[18]. Foods rich in 

sulphate, phosphorus and protein such as 

meat, poultry, fish, cheese, cereals and rice 

are the determinants of DAL, while foods 

high in potassium, magnesium and calcium 

such as legumes, fruits and vegetables are 

the determinants of alkaline load. DAL is 

therefore a balance between foods that 

provide acid and foods that provide base 

precursors[24,28,29]. 

The recent Western dietary pattern is 

characterised by excessive intake of highly 

processed and refined foods, high levels of 

added sugars, salt and high levels of 

(saturated) fats and proteins from animal 

products, and low levels of alkalising plant 

foods[30,31]. Today's diets are poor in 

magnesium, potassium and fiber and rich in 

saturated fatty acids, simple sugars, sodium 

and chloride compared to the diets practiced 

by our ancestors. Therefore, today's diets are 

net acidic, whereas the diets of our ancestors 

were net alkaline. Acid-base balance can 

also be affected by changes in diet over 

time[32,33]. 

Dietary formulas for estimating the acid or 

alkaline effects of nutrients have been 

developed based on this information. The 

use of dietary intake estimates avoids the 

need to measure the net acid excretion from 

the kidneys. However, these formulas 

require quantitative analysis of both dietary 

cations (potassium, calcium, magnesium) 

and anions (sulfate, phosphate). Formulas 

may also include factors related to ion 

absorption from the intestine[18]. 

 

Potential Renal Acid Load (PRAL) 

DAL can be estimated by the potential renal 

acid load (PRAL), which represents the acid 

excretion caused by a nutrient or the diet. 

Remer et al. proposed a mathematical model 

to estimate PRAL that incorporates the 

amounts of micronutrients present in an 

individual's regular diet. PRAL estimates 

endogenous acid production in excess of 

alkali production for foods consumed daily. 

The model takes into account the differing 

absorption rates of minerals and protein 

involved in acid and base production, as 

well as the quantity of sulphate derived 

from metabolized protein[34]. The PRAL 

equation used to measure the DAL of a food 

or diet is shown below; 

PRAL (mEq/day) = (0.49 × total protein 

(g/day)) + (0.037 × phosphorus (mg/day)) - 

(0.021 × potassium (mg/day)) - (0.026 × 

magnesium (mg/day)) - (0.013 × calcium 

(mg/day)) 

The PRAL equation provides an estimate of 

the milliequivalents (mEq) of H+ present per 

100 grams of food. Animal foods generally 

have positive PRAL values, with the 

exception of milk, whose phosphorus 

content is compensated by the amount of 

calcium. Foods with a positive PRAL 

(PRAL > 0) increase renal acid load by 

producing H+ ions. Conversely, foods with a 

negative PRAL (PRAL < 0) are thought to 

decrease renal acid load and thus increase 

the body's buffering capacity. Vegetables 

and fruits have a negative PRAL and are 

considered the largest dietary buffer source 

due to their high potassium content. Proteins 

found in plants have a neutral effect as they 

are rich in glutamate, which utilizes H+ 

ions[35]. 
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Net Endogenous Acid Production (NEAP) 

It is defined as a measure of the difference 

between the acid-producing and alkaline-

producing components of a food. It is 

determined by the balance between the fixed 

acid load from protein and the alkali load 

from potassium in the diet[36]. Therefore, 

Frassetto et al. developed a model that 

includes the protein and potassium ratios in 

the diet, which can predict the net 

endogenous acid production of the diet[28]. 

The NEAP equation is shown below;  

NEAP (mEq/day) = (54.4 × protein (g/day) / 

potassium (mEq/day)) - 10.2 

 

Dietary Acid Load and Relationship with 

Chronic Diseases 

As mentioned earlier, the body can 

effectively buffer transient elevations in 

DAL but chronic exposure can lead to 

metabolic acidosis. Such a condition is 

recognized to increase the risk of 

cardiometabolic diseases and cancer, thus 

significantly affecting morbidity and 

mortality. In addition, damage such as 

breakdown of muscle, connective tissue and 

bone can occur if buffering capacity is 

reduced or the acid load cannot be met[27,37]. 

 

Bone mineral density/Osteoporosis 

Bone health can be affected by things like 

gender, alcohol, smoking, not getting 

enough exercise and diet. One of the dietary 

factors proposed to affect bone mass is 

DAL, which can affect plasma acid-base 

balance. Because of its high calcium 

content, bone tissue acts as an important 

buffer against acid loads and responds even 

faster than the proton excretion mechanism 

of the kidney. Diet-induced metabolic 

acidosis reduces the activity of osteoblasts 

and induces osteoclast-mediated bone 

resorption, leading to bone mineral 

dissolution to maintain acid-base 

homeostasis. Increased osteoclastic activity 

releases calcium and phosphorus from bone, 

which maintains serum pH in the normal 

range and increases calciuria. This process 

occurs during skeletal growth and the acid 

load in the diet can affect bone mass 

formation. Reduced bone mass weakens the 

bone and can lead to an increased risk of 

osteodystrophy, osteoporosis and fractures, 

especially later in life. For older people with 

reduced kidney function, this is particularly 

important. Since the western diets favored 

in recent decades are typically high in DAL, 

constant acid stress may affect bone mass[38-

41]. 

During the period of childhood and 

adolescence, there is a pronounced increas 

in bone size, which results in an elevated 

requirement for calcium and protein. Some 

studies in children have indicated that there 

may be an inverse relationship between 

dietary acidity and bone mass. Studies have 

suggested that high DAL may be associated 

with decreased cortical bone area and bone 

density in children[41,43,44]. However, 

findings on the relationship between DAL 

and bone health in adults are controversial. 

High DAL has been associated with reduced 

bone density and bone structure in some 

studies[18,41,45-48]. However, other studies 

have failed to find any evidence of such a 

link[39,49,50]. This inconsistency has also been 

documented in observational studies 

investigating the association of DAL with 

fracture risk[51-53]. Distinctions based on 

protein source have also been examined in 

studies. Plant-based protein is thought to 

have less acidogenic properties compared to 

animal-based protein. This is because 

animal-based protein sources contain more 

sulfurous amino acids and the metabolism 

of these amino acids can physiologically 

lead to increased acidity. Over time, this can 

be harmful to bone strength and health. 

However, phytates in cereals contain 

phosphate. Phosphate can physiologically 

contribute to increased acidity[38,54]. A meta-

analysis examining the effects of protein 

source on bone mineral density found no 

significant evidence that consumption of 

plant protein was more beneficial for bone 

mass than consumption of animal protein[55]. 

Calcium excretion has been shown to 

increase with high protein intake. As protein 

intake increases, urinary calcium may 

increase and a negative calcium balance 
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may develop. However, increased calciuria 

does not necessarily mean calcium loss, 

negative calcium balance and decreased 

bone mass. It has also been claimed that 

high protein diets have no effect on calcium 

homeostasis. It is therefore possible that 

increased calcium intake may be 

counterbalanced by enhanced intestinal 

absorption[25,56]. A study of 100 

obese/overweight women found no 

difference in serum osteocalcin levels 

between groups on a high carbohydrate diet 

or protein diet[57]. Data in this area remain 

conflicting, with studies, including the 

Framingham osteoporosis study, reporting 

that dietary protein intake is protective 

against fracture risk[58]. 

It has been demonstrated that adequate 

protein intake stimulates the action of IGF-

1, which helps to build bone and increase 

calcium absorption. This helps build and 

maintain bone tissue[54]. In the elderly 

population, protein may be particularly 

beneficial in preventing bone loss and 

slowing the progression of osteoporosis. A 

systematic review of studies in the elderly 

suggested that protein intake above the 

recommended daily protein intake may play 

a beneficial role in reducing hip fracture 

risk, maintaining bone mineral density and 

preventing bone loss[51]. A positive 

association was observed between bone 

mineral density and total and animal protein 

intake compared to vegetable protein 

intake[59]. The existing literature on this 

topic exhibits considerable inconsistencies. 

However, a diet high in fruit and vegetables 

can alleviate the acid load from protein and 

reduce the possible negative impact on bone 

health. A diet with a high amount of fruit 

and vegetables can have a beneficial effect 

on bone health due to the high amount of 

potassium and lower acid content. A 

balanced diet including adequate energy and 

protein intake (both plant-based and animal-

based) and adequate physical activity are 

crucial to ensure bone health. In the context 

of dietary interventions, it is especially 

important to address both the amount and 

type of protein consumed in older people 

and those with multiple comorbidities[25,54]. 

 

Sarcopenia 

Decline in muscle mass and bone mineral 

loss are important public health problems in 

the aging population[60]. Muscle strength 

and muscle mass decline with aging; 

however, the decline in muscle strength is 

more rapid. Reduced muscle strength in the 

elderly may increase the risk of frailty. 

Several factors such as lifestyle, diet quality 

and eating patterns, low protein intake, 

obesity and physical activity can have 

negative effects on muscle strength[40,61]. 

Chronic metabolic acidosis can reduce 

muscle protein synthesis by causing 

increased cortisol production and stimulate 

deterioration in skeletal muscle function by 

increasing proteolysis. Amino acids released 

as a by-product of muscle breakdown can be 

utilised by the liver for the synthesis of 

glutamine and for ammonia in the kidneys. 

At a later stage, ammonia captures H+ and 

excretes them as ammonium ions. Skeletal 

muscle is therefore responsible for the 

reduction of acidosis in order to maintain 

acid-base balance. However, this will lead 

to a decrease in muscle reserves and loss of 

muscle mass in individuals with a high acid 

load diet[40,62,63]. A positive association 

between lean body mass and the 

consumption of an alkaline diet rich in fruits 

and vegetables was found by Welch et al[64]. 

This study emphasised the importance of 

magnesium and potassium, in addition to 

protein, in maintaining muscle mass. An 

inverse association between skeletal muscle 

mass and DAL was also found in another 

study of overweight/obese women[62]. Faure 

et al.[65] found that DAL had a negative 

effect on total body lean mass only in 

elderly women. 

 

Chronic kidney disease  

There is no specific diet to help prevent 

kidney disease from developing or 

progressing. However, a disturbed balance 

of DAL can damage the kidneys. To 

neutralise the H+ load entering the proximal 
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tubular cells, diets with a high acid load 

stimulate the production of ammonia. This 

results in the development of tubular 

hypertrophy and glomerular hyperfiltration, 

a condition that may be reversed during the 

initial stages of chronic kidney disease 

(CKD). The production of three substances-

endothelin-1, angiotensin II and aldosterone 

- increases as the concentration of H+ in the 

tubular cells rises.  These promote the 

release of pro-fibrotic factors, which in turn 

result in a reduced glomerular filtration rate 

(GFR) with prolonged consumption of acid-

producing foods[66,67]. A US study suggested 

that markers of kidney damage (increased 

albuminuria and decreased GFR) may 

increase with a diet high in DAL[68]. In a 

study by Rebholz et al.[66], which followed 

subjects for approximately 21 years, a high 

DAL was seen to be related to an increased 

risk of developing CKD. Two recent 

systematic reviews have confirmed 

associations between DAL and increased 

risk of CKD and reduced renal 

function[69,70].   

Metabolic acidosis, a complication due to 

decreased renal acid excretion in patients 

with CKD, is a modifiable risk factor for 

CKD progression. Once kidney damage 

develops, diets high in acid contribute to 

metabolic acidosis, accelerating disease 

progression and increasing the risk of end-

stage renal failure (ESRD)[66,71]. In the study 

by Banerjee et al.[71], patients with CKD 

who followed a diet with a higher DAL had 

faster progression to ESRD. When patients 

with CKD have metabolic acidosis, alkali 

supplementation or reduced acid intake can 

raise serum bicarbonate, slow eGFR 

decline, and reduce urine albumin 

excretion[72]. 

NKF/KDOQI clinical practice guideline in 

CKD says eating more fruit and vegetable 

can slow down the decline in kidney 

function, body weight, blood pressure and 

DAL[73]. Dietary interventions or alkaline 

supplements can reduce acid excretion and 

slow disease progression. Increased fruit 

and vegetable intake may offer health 

benefits comparable to alkaline 

supplementation in reducing metabolic 

acidosis[74,75]. In accordance with findings, 

dietary modification to reduce DAL may be 

undertaken as a cost-effective, low-risk 

preventive strategy with the potential to 

prevent CKD in healthy individuals and to 

protect the kidneys in CKD patients. 

 

Nephrolithiasis (kidney stone formation) 

It is known that the risk of CKD or ESRD is 

increased by nephrolithiasis, a condition 

associated with the presence and formation 

of kidney stones. Calcium stones are the 

most common kidney stones. Diet is an 

important factor in causing kidney stones to 

form. Consumption of liquids, sodium and 

animal protein can contribute to calcium 

stone. Therefore, increasing fluid intake and 

decreasing sodium and animal proteins are 

generally recommended to prevent calcium 

stone recurrence. The risk of kidney stone 

formation may be affected by changes in 

DAL. Calcium and nutrients in vegetables 

and fruits (which are rich in potassium and 

magnesium) can increase urine pH, while 

animal-based proteins and components of an 

unhealthy diet can lower urine pH and 

increase calcium oxalate stone formation. In 

response to diet-induced metabolic acidosis, 

the kidneys attempt to restore acid-base 

balance. This promotes the formation of 

calcium oxalate crystals by increasing 

calcium and oxalate excretion and 

decreasing citrate excretion[7,76,77]. Studies 

have confirmed that as DAL increases and 

vegetable intake decreases, the risk of 

developing kidney stones increases. It 

emphasises that to lower the risk of kidney 

stones, the eating of plant foods should be 

encouraged to balance the acid load from 

animal foods[78,79]. 

 

Hypertension 

Diet is likely to affect blood pressure (BP). 

Appropriate management of dietary 

components can help control or prevent 

hypertension[80]. People with a diet high in 

DAL consume less BP-lowering minerals. 

Urinary magnesium and calcium excretion 

may increase and intracellular potassium 
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may decrease with high acid load. A 

decrease in potassium leads to an increase in 

intracellular sodium to maintain intracellular 

volume and tonicity, which can exacerbate 

hypertension. At the same time, diet-

induced metabolic acidosis can raise blood 

pressure by increasing cortisol and 

decreasing citrate excretion. When a diet 

high in DAL becomes chronic, renal 

function decreases and BP may rise[81]. 

Studies have reported that high DAL may 

contribute to high BP[10,82,83]. In a meta-

analysis study, DAL was demonstrated to be 

a probable risk factor for hypertension[80]. 

Krupp et al[83]. found significant 

associations between blood pressure and 

prevalence of hypertension and potassium 

intake and DAL. Akter et al[82]. also 

obtained similar results with the previous 

study. A significant relationship between the 

incidence of hypertension and acid load was 

also found by Zhang et al[84]. The study by 

Taylor et al[85]. confirmed that factors 

regulating urinary citrate excretion may also 

be effective in hypertension. However, there 

are studies that have not found a link 

between DAL and blood pressure or 

hypertansion[8,86]. 

 

Insulin resistance/diabetes 

Insulin resistance (IR) has been identified as 

an important factor causing the development 

of many metabolic diseases, including the 

development of diabetes. Lifestyle factors 

have proven effective in preventing or 

delaying diabetes. Dietary changes are also 

described as the first step in initiating 

diabetes treatment. Preferred dietary style 

and choice of nutrients can be influential in 

diabetes risk, so it is important to know 

dietary ingredients and their effects on 

diabetes[87,88]. The link between dietary 

acidity and diabetes has recently been 

highlighted[13]. Meta-analyses have 

concluded that DAL may be a link between 

IR and diabetes[89,90]. In the Korean study, a 

positive relationship was found between 

DAL and future IR development. However, 

they also pointed out that this effect may be 

influenced by various other factors such as 

gender, age and obesity[91]. A recent 

population-based study excluding 

individuals with diabetes and those on 

diabetes treatment found that higher DAL 

was associated with higher IR and insulin 

levels but not with other glycemic 

parameters. Beta cell function was also not 

affected by higher DAL[92]. 

IR is a risk factor for developing diabetes 

including. In a cohort study conducted by 

Fagherazzi et al. on 66,485 women followed 

for 14 years, DAL was reported to be a risk 

factor in addition to the known risk factors 

for diabetes[93]. The association between 

diabetes and DAL was established by 

Kiefte-de Jong et al[13]. In a case-control 

study of 147 people with pre-diabetes, 

people with pre-diabetes had an increased 

acidogenic diet in comparison with a control 

group. It was also shown that high DAL was 

associated with increased prediabetes 

morbidity[94]. A case-control study 

comparing 125 people with newly 

diagnosed diabetes and healthy controls 

suggests that a high DAL may be connected 

to an elevated risk of incident diabetes[14]. 

Among older men without diabetes, high 

DAL were not linked to insulin sensitivity, 

beta-cell function or diabetes risk. Another 

study, from Akter at al., linked higher DAL 

to an increased risk of diabetes in men[95,96]. 

How diet-induced metabolic acidosis 

increases IR remains unclear. However, 

some mechanisms have been proposed for 

their relationship. The first of these 

mechanisms is that low blood pH has been 

proven to reduce both the number of insulin 

receptors and the activity of the reduced 

number of receptors. Impaired binding of 

insulin to receptors may result in reduced 

glucose uptake by muscle tissues and 

worsen β cell function, leading to IR and 

diabetes[97]. The second possible mechanism 

is that a high DAL causes an increase in 

cortisol. As the H+ concentration increases, 

cortisol secretion is stimulated and 

chronically high cortisol levels can be the 

cause of IR[98,99]. The third mechanism is 

that low urinary citrate excretion may be 

correlated with IR. At high DAL, our body 
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excretes less urinary citrate, which may lead 

to IR[95,100,101]. The last possible mechanism 

is that the disturbance of acid-base balance 

affects the absorption of magnesium and 

calcium, which are essential for the normal 

function of insulin. Mild metabolic acidosis 

increases the excretion of magnesium and 

calcium from the body, which may lead to 

IR[102,103]. However, dietary patterns may 

contribute to obesity and IR. This makes it 

difficult to determine exactly how DAL is 

involved in developing IR independent of 

obesity. 

 

Obesity 

The relationship between obesity and the 

subsequent development of chronic 

diseases, including diabetes, IR, CVD and 

hypertension, has been established in 

literature. Given the rising prevalence of 

obesity-related illnesses, preventive 

strategies are becoming increasingly crucial. 

Among the strategies identified, it is of 

paramount importance to alter behaviours 

related to nutrition and diet[83,105,106]. An 

elevated DAL rating is associated with 

increased triglyceride concentrations and 

prevalence of obesity. A reduction in the 

DAL may prove beneficial in the fight 

against obesity[105]. Previous evidence 

suggests that consuming an acidogenic diet 

leads to the accumulation of hydrogen ions 

associated with weight gain. Excess intake 

of animal foods and meat and the adoption 

of westernized diets lead to higher organic 

acid production and fatty acid oxidation, 

especially in obese individuals[106]. A study 

of 456 children in Iran reported that children 

consuming a more acidogenic diet had a 

higher risk of general and central 

obesity[107]. Studies have shown that high 

DAL is linked to certain body 

measurements. A study of 207 students aged 

18-25 years found that high DAL was 

related to higher weight, fat mass, hip 

circumference, and lower fat-free mass. It 

was suggested that this could be a link with 

obesity[108]. The study found that higher 

DAL may be negatively associated with 

resting metabolic rate, but directly related to 

higher waist circumference, IR, diastolic BP 

and waist-to-hip ratio in obese or 

overweight women[109]. Overall, obesity was 

associated with higher DAL. It may be 

feasible to mitigate the likelihood of 

developing metabolic disorders by focusing 

on the reduction of DAL in individuals with 

obesity. 

 

Cardiovascular Disease and Mortality 

Poor dietary habits, age, genetics, sedentary 

lifestyle, hypertension, obesity, diabetes, 

dyslipidemia and smoking are known risk 

factors for CVD. Identifying these risk 

factors in individuals is important for 

determining the appropriate treatment and 

prevention strategy. Changing dietary habits 

among risk factors is an important approach 

in the management and prevention of CVD 

and mortality, and can reduce mortality and 

increase life expectancy. A considerable 

body of research has been conducted to 

investigate the impact of DAL on 

cardiometabolic risk factors[15,110]. 

High DAL has been associated with an 

undesirable cardiometabolic risk 

profile[9,10,13,93,99]. A study of 11,601 patients 

in Korea found that a high DAL was 

associated with an increased risk of CVD, 

even when obesity and IR were taken into 

account[111]. In a cross-sectional study of 

371 women, Mozaffari et al[112]. reported 

that women with high DAL tended to have 

higher weight, waist circumference and 

triglyceride concentrations. Nevertheless, no 

association was observed between DAL and 

CVD incidence or risk factors in the Polish 

and Iranian studies[113,114]. 

CVD is today the most prevalent cause of 

mortality worldwide. A diet with too much 

acid in it is linked to more chronic diseases, 

so a higher DAL is likely to raise the risk of 

CVD, hypertansion and death. In 454 people 

who had previously undergone coronary 

artery bypass grafting surgery, they reported 

that a higher DAL was associated with an 

increased 10-year mortality risk[15]. The 

Japanese study revealed a statistically 

significant correlation between a high DAL 

level and an elevated probability of 
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mortality from all causes and CVD[96]. Xu et 

al[115]. found a U-shaped relationship 

between DAL and mortality. Both high 

alkaline diets and high acid diets were 

associated with higher mortality. The lowest 

mortality rate was seen in those adopting an 

acid-base balanced diet.   

Despite the lack of clarity surrounding the 

precise mechanism through which DAL is 

linked to CVD, several potential 

explanations have been put forth. These 

include increased body weight, IR, high 

blood pressure and effects on lipid 

metabolism. A high DAL may elevate the 

risk of IR by impeding the capacity of 

insulin to interact with its receptor, but high 

acid load may increase CVD risk 

independently of IR through several 

pathways, including impaired coronary 

microcirculation and increased 

arrhythmogenesis[96,116,117]. Another 

mechanism is that the increased metabolic 

acidosis associated with high DAL increases 

cortisol production, ammonia formation and 

renal acid excretion. This may lead to 

hypertension[114]. The final mechanism is 

that elevated cortisol concentrations can 

stimulate lipase activity, resulting in 

elevated free fatty acid concentrations in the 

bloodstream and augmented production of 

very low-density lipoproteins (high TG 

concentrations) in the liver[111,112]. 

The Mediterranean diet has been 

demonstrated to have a beneficial effect on 

cardiovascular health and metabolic health. 

It is rich in bioactive nutrients and their 

combination contributes to the health-

promoting effects of the Mediterranean 

Diet. A study of 448 adults found that 

adherence to the Mediterranean diet was not 

associated with a reduction in the estimated 

risk of CVD and metabolic syndrome. 

Nevertheless, a high DAL was associated 

with a greater prevalence of metabolic 

syndrome and an elevated risk of CVD[118]. 

 

Steatotic liver disease associated with 

metabolic dysfunction (MASLD)/ 

non-alcoholic fatty liver disease (NAFLD) 

In June 2023, NAFLD, also known as 

MASLD, was officially redefined. MASLD 

was defined within the steatotic liver disease 

construct as an umbrella term that facilitates 

the classification of various liver disorders 

with abnormal fat accumulation. This new 

term includes a more metabolic-oriented 

definition and two stigmatizing terms (non-

alcoholic and fatty) have been removed 

from the definition of the disease[119,120]. 

MASLD is associated with many lifestyle 

and nutrition-related risk factors, including 

metabolic syndrome, dyslipidemia, diabetes, 

obesity and IR. Diet is a significant 

contributing factor in the development of 

MASLD. Different dietary patterns and 

habits can prevent or enhance the 

progression of MASLD[121,122]. In the 

context of the development of chronic 

diseases, it can be posited that high DAL 

may be an effective factor. Therefore, we 

hypothesized that DAL has a potential 

association with MASLD. A cross-sectional 

population study showed a moderate 

association between NAFLD and DAL[123]. 

A positive association between DAL and 

NAFLD was reported in a cross-sectional 

study including 18,855 individuals in the 

US[124]. A prospective cohort study, an 

independent and non-linear association 

between acidic diet and NAFLD was 

found[125]. A recent case-control study, the 

relationship between DAL and NAFLD was 

found to be U-shaped[126]. 

NAFLD is a form of the metabolic 

syndrome that affects the liver. Although 

the precise mechanism by which DAL 

exerts its influence on the pathogenesis of 

NAFLD remains elusive, the correlation 

between high DAL levels and multiple 

components of the metabolic syndrome, 

including elevated BP, IR and obesity, 

suggests the possibility of underlying 

mechanisms. Furthermore, it has been 

demonstrated that reduced levels of growth 

hormone (GH) and IGF-1 are correlated 

with an elevated prevalence of NAFLD 

amongst adults. Diet induced metabolic 

acidosis suppresses GH secretion and the 

IGF-I response, leading to resistance. It is 
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postulated that high DAL may contribute to 

hepatic triglyceride accumulation, 

potentially through their effect on the GH-

IGF-I system[123,127,128]. 

 

Cancer 

Globally, cancer represents a significant 

cause of morbidity and mortality. Exposure 

to risk factors has been demonstrated to 

exert a pivotal influence on the biological 

characteristics of the majority of cancer 

types. The etiology of most cancer types is 

complex, including lifestyle, environmental 

and genetic factors. The identification of 

modifiable risk factors is of significant 

importance in the context of cancer 

prevention. Diet can influence the body's 

hormonal, metabolic and inflammatory 

responses and can be an important factor in 

cancer prevention strategies[129,130]. In 

general, a diet rich in vegetables and fruit 

reduces the risk of cancer, while a high 

intake of animal products, especially red 

and processed meat, can increase cancer 

risk. Similarly, studies have identified a 

positive association between the 

consumption of a Western-style diet, which 

is characterized by a high intake of animal 

products and processed foods, and the 

development of different types of cancer. It 

is postulated that diet-induced metabolic 

acidosis contributes at least partly to the 

increased risk of developing this 

condition[131,132]. Two recent meta-analyses 

have found an association between a DAL 

and an increased risk of cancer, as well as 

an unfavourable prognosis for cancer, and 

have concluded that it is a significant risk 

factor for this disease[129,133]. This state of 

diet-induced metabolic acidosis may be 

considered a systemic stress, with the 

potential to induce severe metabolic 

alterations that promote cancer. The main 

mechanism between cancer and DAL is 

thought to be through IR. However, 

indirectly acid-base imbalance can stimulate 

carcinogenesis or metastasis[134]. An acidic 

diet can reduce adiponectin levels, causing 

an increase in insulin and therefore an 

increase in IGF-1. Insulin and IGF-1 are 

thought involved in the development of 

cancer by inhibiting apoptosis. At the same 

time, increased IGF-1 may also trigger 

angiogenesis and metastasis. In another 

possible mechanism, elevated cortisol due to 

an acidic diet may suppress the immune 

system, prevent apoptosis of cells with 

mutations, and cause increased DNA 

damage[133,135]. 

 A large-scale study conducted in Uruguay 

provided epidemiological evidence based on 

ten case-control studies involving 3736 

cancer cases and 9534 controls. Studies of 

many types of cancer have been part of this 

review. It found that dietary intake of DAL 

was related to cancer risk, and that cancer 

risk was also related to amount of 

methionine in animal food relative to DAL. 

The researchers suggested that reducing 

high levels of methionine could help reduce 

the risk of cancer caused by high levels of 

DAL[135]. In a prospective cohort study by 

Shi et al.[136], DAL was positively associated 

with pancreatic cancer. A case-control study 

in Korea involved 923 patients with 

colorectal cancer. As has been the case in 

other studies, an acidic diet has been shown 

to have a positive effect on cancer risk. The 

positive association was also found to be 

stronger for women than men. It was also 

highlighted that acidogenic diets should be 

given special consideration, especially in the 

setting of cancer prevention in women[137]. 

Data from a total of 43,750 participants in 

the Sister Study were analysed in a 

prospective cohort study that was conducted 

in the US. The study found a positive link 

between DAL and breast cancer risk. 

Evidence also suggests that diets rich in 

fruit and vegetables can help prevent breast 

cancer[138]. However, unlike these studies, a 

case-control study of 150 Iranian women 

with breast cancer found that DAL was not 

associated with breast cancer incidence[139]. 

 

CONCLUSION 

In conclusion, the results of various studies 

have indicated that DAL may be an 

effective intervention in the occurrence or 

development of cardiometabolic diseases. 
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The Western-style dietary patterns currently 

observed are associated with an increased 

risk of cardiometabolic diseases. This may 

be, at least in part, due to the high content of 

DAL observed in these diets. Nevertheless, 

research exploring the correlation between 

high DAL and negative health outcomes is 

predominantly observational. The direction 

of causality in the association between 

adverse health outcomes and other factors 

remains unclear. Consequently, longitudinal 

cohort and dietary intervention studies are 

required in order to ascertain the 

relationship between high DAL and diseases 

and metabolic outcomes. 
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